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Abstract

It has been shown in our recent Landau analyses for a compressible block copolymer that its phase behavior is largely described by an
effective Flory interaction parameter, which is subdivided into the density-dependent dimensionless exchange energy and the contribution
from the 1,2- and 2,2-elements of the second-order vertex functions. Here, it is further shown that for the symmetric copolymer in the long chain
limit those two vertex functions are directly proportional to disparity in equation-of-state properties between blocks and the isothermal bulk
modulus, respectively. It is argued that the relative strength of molecular parameters governing each part of the effective Flory parameter
determines whether a given copolymer experiences ordering (barotropic) or disordering (baroplastic) upon pressurization. Comparison of theory
with experimental results is also mentioned.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Studies on various behaviors of block copolymers have
drawn tremendous interest from the polymer circle, because
those materials exhibit self-assembly behavior to form micro-
scopically ordered nanomaterials [1e3]. It is well known from
the seminal work by Leibler [4] that the copolymer phase
behavior is determined by composition f, Kuhn segmental
length N, and Flory’s phenomenological interaction parameter
cF. Typical block copolymers exhibit ordering upon cooling or
upper orderedisorder transition (UODT). Most of the analyses
on block copolymers including Leibler’s work are thus based
on the common assumption of system incompressibility [3].
However, there have been numerous recent findings that
strongly address a clear need for finite compressibility to inter-
pret the compressible nature and the pressure responses of
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block copolymers. The relevant findings include ordering
upon heating or lower disordereorder transition (LDOT)
phenomena in styrenic block copolymer melts and films
[5,6], loop-forming block copolymers [7,8], and baroplastic
copolymers to utilize pressure-induced flow [8e10].

The LDOT and the pressure effects including baroplasticity
have been successfully analyzed in a recent series of works by
the present author on a compressible random-phase approx-
imation (RPA) theory [11e16]. Finite compressibility was
incorporated into the theory through effective RPA interac-
tions, which is obtained from a molecular equation-of-state
model by Cho and Sanchez (CS) [11,17]. cF was reinterpreted
as cF¼ cappþ ccomp, where capp is the density-dependent
exchange energy and ccomp represents compressibility differ-
ence between constituent blocks. Here in this communication,
it is our objective to express cF in more explicit phenomenolog-
ical terms in order to broaden our knowledge of pressure
effects on block copolymers. We believe that better under-
standing of copolymer properties will help us to design new
nanomaterials from them with aimed purposes such as
pressure sensitivity.
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2. Theoretical consideration

Let us consider AeB diblock copolymers with Ni mono-
mers of i-type. Copolymer chains are assumed as perturbed
hard sphere chains of uniform size s in a continuum. The non-
bonded perturbed i,j-interactions are characterized by 3ij. A
hard-core volume fraction of i-monomers on the copolymer
chains is defined by fihNi=

P
Ni. We denote as hf the fraction

of free volume in the system, and as h ¼ 1� hf the total
dimensionless density of all the monomers present. Phase
segregation in this system can be probed with the thermally
averaged order parameters such as jið~rÞhhdhið~rÞi ¼
hhið~rÞ � hii, where hi ¼ fih and hið~rÞ are global and local
densities of i-block component, respectively. The basic
scheme of our compressible RPA theory can be conceptually
stated as follows. The Landau free energy F of the system
can be obtained from an Edwards Hamiltonian with effective
(RPA) interactions Wij as Wij ¼ v2½ani�=vhivhj, where ani is
the nonideal (hard chainþ nonbonded interaction) part of
the Helmholtz free energy density a from the CS model
[11e16]. The two contributions to ani are given as bahc ¼
3h=2ð1� hÞ2 for the hard chain part in the long chain limit
and banb ¼

P
fifjb 3ijuðhÞ=2 for the nonbonded perturbed in-

teraction part, where u(h) describes the density dependence of
the perturbed interactions as u(h)¼ 4[(g/C )4h4� (g/C )2h2]
with g ¼ 1=

ffiffiffi
2
p

, and C¼p/6. The symbol b is 1/kT as usual.
The proper derivatives of bahc and banb, respectively yield
Lij(h) and �b3

app
ij ðhÞ for bWij as

LijðhÞ ¼
3þ 6h
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The equilibrium bulk density h is determined at a given set of
temperature and pressure from the resultant CS equation-
of-state as bPv� ¼ h2ðvbani=vhÞ þ h=

P
Ni [11,17], where

v� ð¼ ps3=6Þ is the volume of one monomer.
The Landau free energy F for the system can be expanded

as a series in the order parameter ji as bF ¼
PN

m¼2 ð1=m!ÞR
d~q1.d~qmG

ðmÞ
i1.im
ð~q1.~qmÞji1ð~q1Þ.jimð~qmÞ, where jið~qÞ is

the Fourier transform of jið~rÞ with ~q denoting physically the
scattering vector. The coefficient G

ðmÞ
i1.in

is commonly known
as the mth-order vertex function. It is well known that
G
ð2Þ
ij ð~q1;~q2Þ ¼ S�1

ij ð~q1;~q2Þdð~q1 þ~q2Þ, where Sij is the second-
order monomeremonomer correlation function and
dð~q1 þ~q2Þ the Dirac delta function. The compressible RPA
treatment yields S�1

ij ¼ S0�1

ij þ bWij, where S0
ij is the Gaussian

i,j-correlation function for the given copolymers [11e16]. The
conventional Gaussian functions for the corresponding in-
compressible copolymers are equated here to S0

ij=h, where h
corrects the diluted contact probabilities by the presence of
free volume. While G

ð2Þ
ij is strongly dependent on the effective

interactions, the higher-order G
ð3Þ
ijk and G

ð4Þ
ijkl are shown to be

purely of entropic origin [12].
It is often useful to change the order parameters to

j1hðjA � jBÞ=2h and j2hjA þ jB, where the latter is
equated to fluctuations in free volume fraction as j2 ¼
�hdhfð~rÞi. The Landau energy F can then be expanded as a se-
ries in the Fourier-transformed jið~qÞ and the mth-order vertex
function is accordingly changed to G

ðmÞ
i1.in

as

G
ðmÞ
i1.im
¼ G

ðmÞ
j1.jm
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where the matrix Mij is defined as
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It can be seen that ji ¼ Mijjj [14].
The phase stability condition requires G11 � G

2

12=G22 > 0
[11e14,18]. If G

ð2Þ
ij ’s are rewritten more explicitly with Lij

and �3
app
ij after the transformation in Eq. (3), then
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In Eq. (5), D3 is the exchange energy as D3¼ 3AA þ 3BB � 23AB.
In our previous works [14e16], an effective Flory-type cF

was given as cF¼ cappþ ccomp, where capp was defined as
bD3=2:juðhÞj, and ccomp as G

2

12=2hG22. It is seen that
G
ð2Þ
11 =h is expressed in a conventional form as (Gaussian e 2capp).

It is desirable to relate G
ð2Þ
12 and G

ð2Þ
22 of ccomp to more familiar

terms. For simplicity, we consider a symmetric copolymer.
The first and the third terms of G

ð2Þ
12 in Eq. (6) then vanish, and

as a result the difference in self interactions, 3AA � 3BB, be-
comes proportional to G

ð2Þ
12 . Disparity in equation-of-state

properties between constituent blocks can be measured by
PfðhðvP=vfÞT;vÞ, which is obtained from the CS model as

Pfv� ¼ 1=2:f3AA � 3BB �D3ð1� 2fAÞgh2 du=dh ð8Þ

The manipulation of u(h) gives ½uþ h2 d=dhðu=hÞ� ¼ h du=dh.
Therefore, it is seen at fA¼ 1/2 that

hG
ð2Þ
12 ¼ bPfv� ð9Þ

The remaining G
ð2Þ
22 is mostly determined by the given sum

of Lij’s and 3
app
ij ’s in the long chain limit, as S0�1

ij wOð1=NÞ.
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It can be further shown that
P

Lij=4 ¼ 3ð1þ 2hÞ=ð1� hÞ4,
and

P
½�b3

app
ij �=4 ¼

P
b 3ij=4� 2½20ðg=CÞ4h3 � 6ðg=CÞ2h�.

The isothermal bulk modulus BT ðhh vP=vhÞ can be given
again from the CS equation-of-state as BT ¼ Bhc

T þ Bnb
T ,

where bBhc
T v� ¼ 3h2ð1þ 2hÞ=ð1� hÞ4 from the ahc part in

the long chain limit and bBnb
T v� ¼

P
fifjb 3ij:2½20ðg=CÞ4h5 �

6ðg=CÞ2h3� from the anb part. It is then clear that

h2G
ð2Þ
22 zbBTv� ð10Þ

Therefore, it is concluded from Eqs. (9) and (10) that

2ccomp ¼ G
2

12=hG22zbv�P2
f=hBT ð11Þ

As BT> 0, ccomp� 0 and always hampers miscibility [19].

3. Discussion

The dependence of juðhÞj on h in its useful range is fairly
linear. It is typical that polymer density or volume changes
by w8% with DP¼ 100 MPa. The increase of h then yields
a similar increase of juðhÞj and thus capp if D3 > 0. Mean-
while, Pf changes by less than 8%. However, BT, which is
more dependent on Bhc

T than on Bnb
T , increases by w80% along

with DP¼ 100 MPa. As a result, ccomp decreases strongly
upon pressurization. Therefore, the magnitudes of D3 and
3AA � 3BB determine the relative strength of capp and ccomp,
which in turn decides whether a given copolymer exhibits
ordering (barotropic) or disordering (baroplastic) upon pres-
surization. We will give some illustrations in the following
paragraph.

An example of barotropic systems is polystyrene-b-poly-
isoprene [20]. It was shown that D3=3AA ¼ 0:0093 and
ð3AA � 3BBÞ=3AA ¼ 0:012 well explain the experimental phase
behavior [13]. This system reveals dominant capp and vanish-
ingly small ccomp, so that it becomes barotropic with
ðvTUODT=vPÞf ¼ 20e30 K=100 MPa. The theory gives the
positive volume of disordering of DVmix/V¼ 3.8� 10�4,
which is consistent with the observed value of DVmix/V¼
4.5� 10�4 by Hadjuk et al. [20]. Polystyrene-b-poly(n-pentyl
methacrylate) of Mw¼ 50 000, which exhibits an immiscibility
loop between 443 and 528 K, is a marvelous example of baro-
plastic materials [7,8]. In this case ð3AA � 3BBÞ=3AA ¼ 0:104.
The cross interaction parameter 3AB requires a free-energy-

J. Cho / Polymer 4
like character to describe weak directional interactions in the
system. At 473 K, 3AB=3AA ¼ 0:947 or D3=3AA ¼ 0:0024.
The ratio ccomp/capp reaches w0.6, which results in the largest
ever baroplastic response for this loop-forming copolymer
with ðvTLODT=vPÞf > 700 K=100 MPa [15]. The theory
predicts the negative volume of disordering of DVmix/V¼
�6.5� 10�4 at 473 K, while it was measured that DVmix/V¼
�1.5 to �1.9� 10�3 over the loop [8].
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